首页>科技发展>前沿聚焦>正文

MIT使用剪纸技术制造飞机、汽车、航天器结构

2024-01-03 科学谷

日前,MIT麻省理工学院宣布他们的一种设计使用剪纸制造超强、轻质的结构。坚固的金属网格采用剪纸技术制成,比软木更轻,并且具有可定制的机械性能,可用于飞机、汽车或航天器。

多孔材料是由许多堆积在一起的细胞组成的材料,例如蜂窝。这些晶胞的形状在很大程度上决定了材料的机械性能,包括其刚度或强度。例如,骨骼中充满了天然材料,使其重量轻,但坚硬而坚固。

轻量化、定制化

受到自然界中发现的骨骼和其他细胞固体的启发,人类使用相同的概念来开发建筑材料。通过改变构成这些材料的晶胞的几何形状,研究人员可以设计材料的机械、热或声学特性。 这类的建筑材料用于许多应用,从减震包装泡沫到散热器等等。

麻省理工学院的研究人员利用剪纸技术制造出了一种被称为板状晶格的高性能建筑材料,据称,其规模比科学家之前通过增材制造所能实现的规模要大得多。

研究人员开发了一种模块化构造工艺,其中许多较小的部件被成型、折叠并组装成3D形状。利用这种方法,麻省理工的科研人员制造了超轻、超强的结构,在指定的负载下,它们可以变形。

由于这些结构重量轻,但坚固、坚硬,并且相对容易大规模批量生产,因此它们在建筑、飞机、汽车或航空航天部件中具有较大的应用潜力。

板晶格是由板的三维交叉点而不是梁制成的蜂窝结构。这些高性能结构比桁架晶格更坚固、更坚硬,但其复杂的形状使得使用 3D 打印等常用技术制造它们具有挑战性,特别是对于大规模工程应用。

麻省理工学院的研究人员通过剪纸技术克服了这些制造挑战。剪纸是一种通过折叠和剪纸制作3D形状的技术,剪纸技术用于制作夹层结构的时候,必须将平板连接到该波纹芯的顶部和底部,并固定在锯齿形折痕形成的狭窄点上。这通常需要强力粘合剂或焊接技术,从而导致组装速度缓慢、成本高昂且难以规模化。麻省理工学院的研究人员修改了一种常见的折纸折痕图案,称为Miura-ori图案,因此与钻石上的刻面一样,通过刻面提供了平坦的表面,可以使用螺栓或铆钉更轻松地将板固定在该表面上。

此外,研究人员设计、折叠和切割图案的方式使他们能够调整某些机械性能,例如刚度、强度和弯曲模量,他们将这些信息以及3D形状编码到折痕图中,用于创建这些剪纸波纹。例如,根据折叠的设计方式,一些单元可以被固定,以便它们在压缩时保持其形状,而另一些单元可以被变形,以便它们弯曲。通过这种方式,研究人员可以精确控制结构的不同区域在压缩时如何变形。

由于结构的灵活性是可控的,这些可变形部位可用于支持机器人或其他具有移动、扭曲和弯曲部件的动态应用。

模块化

为了制造机器人等更大的结构,研究人员引入了模块化工艺。他们批量生产更小的折痕图案,并将其组装成超轻、超强的3D结构。较小的结构具有较少的折痕,从而简化了制造过程。

就像3D打印一样。但与3D打印不同的是麻省理工的工艺可以为材料的性能设定限制,利用麻省理工的方法,科研人员制造出抗压强度超过62牛顿的铝结构,但每平方米的重量仅为90公斤。(软木每平方米重约 100 公斤。)这种结构非常坚固,能够承受的力是典型铝波纹板的三倍。

这种技术可用于许多材料,例如钢和复合材料,使其非常适合生产飞机、汽车或航天器的轻型减震部件。

然而,研究人员发现他们的方法可能很难建模。因此,未来他们计划为这些剪纸板网格结构开发用户友好的CAD设计工具。此外,他们希望探索降低模拟设计的计算成本方法,从而更方面定制化所需的材料特性。

这项工作的部分资金由比特和原子研究联盟中心、AAUW国际奖学金和GWI Fay Weber资助。


关键词: 剪纸技术   轻量化   定制化   模块化