最近几年,无人驾驶这几个字频繁出现在公众视野里,全球各大科技巨头已经汽车厂商也都纷纷投入了这一领域的研发,关于无人驾驶汽车何时正式大量地上路载人,业内普遍的说法是2020年。但最近麦肯锡表示,要实现全自动无人驾驶,至少还要10年,更要命的是,无人驾驶汽车的核心零部件激光雷达目前已经出现短缺,影响了无人驾驶汽车的开发。
如何解决无人驾驶汽车技术中的难题?
无人驾驶汽车无疑将开启了交通运输行业的新时代,但整个行业尚需解决一些技术难题,方可真正实现能够商业化的全自动无人驾驶技术。我们已经看到,ADAS功能可以减轻驾驶负担,并使驾驶的过程变得更安全。但在某些情况下,该技术也会引发新的问题,例如,人类过分信任或依赖这些新系统。这并不是一个新现象,当安全气囊成在20世纪90年代为汽车的标配时,一些驾驶员和乘客将此作为自己可以不佩戴安全带的理由,显然这种错误的观念将导致额外伤亡事件的发生。
与之相类似,ADAS功能的标配化会使驾驶员在工况超出ADAS处理能力的情况仍然盲目依靠它。例如,自适应巡航控制技术在汽车直接跟随另一辆行驶中的汽车时能够运行良好,但它通常不能发现静止的物体。不幸的是,现实生活中的情况以及受控实验都表明,对自动化过于信任的驾驶员最终会以撞上静止的汽车或其他物体而告终。ADAS目前可实现的功能有限,而这正是许多早期用户所没有真正领会理解到的。
此外,还有一些因素会导致安全难题。2015年,在美国,驾驶传统汽车(即SAE Level 0)的司机因开车时分心而引发的交通事故造成了近3500人死亡,39万余人受伤。不幸的是,据专家预计,在引入具有某种级别自动驾驶功能但仍要求人类驾驶员随时接管车辆控制权以防止事故发生(注:即该自动驾驶系统仍然无法完全取代人类驾驶员,应该指SAE Level 3及以下的自动驾驶水平)的汽车之后,一开始车祸发生的数量并不会显著下降。
安全专家担心,半自动驾驶汽车的驾驶员可能会在自动驾驶模式下进行阅读或发短信等活动,从而在被要求接管汽车控制权的瞬间会缺乏对环境必要的感知。随着驾驶员又再次操控汽车,他们必须立即评估周围环境、确定车辆在其中的位置、分析其所面临的危险状况并选定一个安全的行动方案。而当车速达到65英里/小时(约合104公里/小时)时,汽车只需不到4秒的时间便可驶过相当于标准足球场长度的距离,且驾驶员将控制权交给汽车的时间越长,再次进入驾车状态的过程也会越长。因此,汽车制造商必须开发更好的人机界面,以确保新技术将挽救更多的生命而不是引发更多的事故。
我们在其他场合也遇到过类似的问题:2009年,因为飞行员在客机处于自动驾驶模式下飞行时没有及时接管控制权,致使该航班飞机驶过了其目的地机场约150英里才被发现。对于半自动驾驶汽车而言,“空域”(对应于汽车行驶的“地面”)将变得更加拥挤,“飞行员”(对应于操控汽车的“驾驶员”)的训练状况也较差。因此,对于全神贯注于做其它事情的驾驶员而言,汽车在自动驾驶模式下运行时间过长会变得更加危险。
在接下来的5年中,可能会出现属于SAE Level 4级别的自动驾驶汽车,该类汽车能够在特定场景下完成所有原本需要人类驾驶员完成的驾驶任务,期间并不需要人类驾驶员的干预。虽然此技术已经能够在有限场景下以将来正常工作的状态进行测试,但真正验证该系统的性能可能仍然需要花费数年时间,因为系统必须进行大量测试以求得能够暴露于罕见场景(注:即机器学习中所谓的“Edge Cases”)中的机会,并采取应对措施将其剔除。此外,工程师还需要实现与保证系统可靠性及安全性方面的目标。起初的时候,公司通常会将系统设计成能够在特定地理区域内的特定应用场景中可靠运行,即所谓的设定“地理栅栏”(Geofence)。另外一个先决条件是,在调整系统以确保能在特定场景中成功运行之后,当“地理栅栏”扩展到涵盖更广泛的应用场景和更大面积的地理区域时,亦需进行相应的额外调整。
实现SAE Level 4及SAE Level 5的难点在于需要在任何环境下且在没有任何限制的条件下安全地操控汽车,例如,需要在没有绘制过地图的地区或者没有车道线及重要基础设施和环境特征的道路上行驶。因此,由于工程师必须要覆盖和测试的应用场景(Use Cases)数量呈指数级增长,建立一个可在(大部分)无限制环境中运行的系统将需要花费更多的精力。例如,在没有车道标记或车辆行驶在未铺设石板/柏油的道路上,系统必须能够判断出哪些区域是可行驶区域。这是一个困难的计算机视觉技术问题,特别是如果路面与周围环境没有显着差异时,例如道路被大雪所覆盖时间。
完全无人驾驶至少还要10年
鉴于目前的发展趋势,未来10年内完全自动驾驶汽车(SAE Level 4及以上级别)将难以真正实现,其中主要的障碍在于开发满足SAE Level 4及以上级别要求的软件。虽然硬件方面的技术创新能够提供所需的计算能力,而且价格(特别是传感器)会下降(注:由于反摩尔定律的作用),但软件仍将是关键的技术瓶颈。
事实上,硬件的性能已经接近达到使高度优化后的自动驾驶汽车软件(Well-Optimized AV Software)顺畅运行所需的水平,目前的技术应该能够很快达到自动驾驶汽车所需的计算能力,不论是图形处理器(Graphics Processing Units,GPU)还是中央处理器。
目前摄像头已经能够满足测试距离、分辨率和视场等方面的性能要求,但在恶劣天气条件下也面临显着的局限性。毫米波雷达在技术上已经准备就绪,它是恶劣天气及路况条件下进行探测的最佳选项。提供最佳视场的是激光雷达,它可以极高的精度探测车辆周围360度内的环境状况。虽然目前市场上出售的激光雷达的价格还非常昂贵,但一些商业上可行的小型廉价产品应该会在未来一两年内进入市场。几家高科技公司声称可将激光雷达的成本降低到500美元以下,另一家公司已经推出了一种售价约为10000美元的能够实现完全自动驾驶的系统(大约有十几个传感器)。从商业化的角度来看,企业需要了解SAE Level 5汽车所需的最佳的传感器数量,以控制整车的成本。(注:例如,以色列固态激光雷达创业公司Innoviz在5月23日刚刚推出的固态激光雷达产品InnovizPro的售价将低于7000美元)
开发出与自动驾驶汽车硬件所具备的全部潜力相配且能充分利用之的软件仍然需要较长时间,鉴于问题的复杂性和目前以科研为导向的属性,工程开发方面的时间进度表基本已处于停滞状态。
一个关键的问题是,自动驾驶汽车必须在道路上有其他自动驾驶汽车以及人类驾驶员的情形下,学习如何与之协商驾驶方式(注: Chris Urmson在4月份CMU的讲座中也指出这是一个令人头疼的博弈难题)。此外,使用易出错的GPS传感器来对车辆进行高精度定位是另一个待解决的复杂问题。解决上述难题不仅需要大量的前期研发,而且还需要经过长时间的测试和验证。
3种类型的问题更具体地说明了软件问题。首先是物体分析(Object Analysis),即探测到物体并理解它们所代表的含义,对自动驾驶汽车至关重要。例如,该系统应该以不同的方式处理静止停放的摩托车和在路边骑自行车的人。因此,必须在物体分析阶段就捕捉到两者之间关键性的差异。
物体分析问题中的初步挑战是物体探测,考虑到一天中不同的时间段、环境背景和任何可能的运动,这项任务可能会变得很困难。此外,考虑到传感器所采集的各数据类型(来自激光雷达的点云数据,来自雷达的对象列表以及来自相机图像数据)之间的差异,确认物体的存在性及其类型所需的传感器融合算法在技术上实现起来是极具挑战性的。
第2个问题决策系统(Decision-Making Systems)的设计。为了模仿人类的决策,它们必须历经大量应用情景并进行密集且全面的“训练”。理解和标注收集的不同的场景和收集到的图像对于自动驾驶系统而言是一个运用普通方法所难以解决的问题,创建全面的、能够覆盖到自动驾驶汽车所能遇到的所有场景的“if-then”规则库是行不通的。但是,开发人员可以先构建一个“if-then”的规则数据库,然后在此基础上利用机器学习引擎来对其进行补充,因为后者能够在特定场景中进行智能推理并采取相应行动,而创建一个这样的引擎是一项非常艰巨的任务,需要完成大量的开发、测试和验证工作。
最后,该系统还需要一个故障安全机制(Fail-Safe Mechanism),该机制能确保在汽车发生故障时不会让车上的乘客和周围的人员陷于险地。目前尚无方法来检查每一个可能的软件状态及其所造成的结果,建立防护措施以防止最坏结果的发生同时控制车辆以使其安全地停车仍是待解决的难题。因此,冗余设计和长时间的测试工作将是必须的。
多家供应商确认激光雷达缺货
尽管仍有许多技术难关待攻克,无人驾驶汽车的研发一直如火如荼,然而,最近在供应链上却有不太好的消息传出来,有关激光雷达生产短缺的详细情况逐渐被披露,据说已经成为了无人驾驶汽车开发与生产的瓶颈。
EBN记者B.Cameron Gain曾发表文章称,我所接触的供货商和分析师都承认,美国的Quanergy和Velodyne公司正在尽力向包括Continental、Denso和Ibeo在内的系统制造商提供单价250美元的激光雷达部件。最终这些部件制造商必须将产品单价降低到150美元以下才能满足供货商的需求,据Frost&Sullivan的数据披露。
就Velodyne公司而言,公司积压的订单可能长达6个月了,据该公司确认。
在优步对谷歌的Waymo诉讼案件(起诉优步从Waymo公司非法采购无人驾驶技术用于其无人驾驶项目)的回应中也间接提到了上述生产短缺。虽然优步间接引用了Velodyne公司,但在它的诉讼中写道,优步“在目前上路的所有汽车中使用了第三方(比如Velodyne)提供的商用激光雷达技术。”
“激光雷达技术跟不上测试所需的数量需求,商用的更少。事实上,优步自己开发定制激光雷达的原因部分是因为很难从商业来源获得足够数量的激光雷达传感器,”优步公司表示,“优步的主要汽车部件供应商均无法满足其对激光雷达的需求。”
然而,激光雷达供应问题不一定会限制研究实验室内的自动驾驶汽车开发。尽管有报告仍然表示滑铁卢大学的自动驾驶汽车项目因为激光雷达短缺被迫推迟几年时间,但滑铁卢大学WatCAR系管理主任Ross McKenzie表示,滑铁卢大学的自动驾驶汽车项目“不会延期”。Ross指出,WatCAR已有5年历史的Velodyne激光雷达产品虽然已经停止运行,但今年4月份已经被其它器件所取代。用于研究目的的新器件有望再继续工作5年,他指出。
实现SAE Level 4及SAE Level 5的难点在于需要在任何环境下且在没有任何限制的条件下安全地操控汽车,例如,需要在没有绘制过地图的地区或者没有车道线及重要基础设施和环境特征的道路上行驶。因此,由于工程师必须要覆盖和测试的应用场景(Use Cases)数量呈指数级增长,建立一个可在(大部分)无限制环境中运行的系统将需要花费更多的精力。例如,在没有车道标记或车辆行驶在未铺设石板/柏油的道路上,系统必须能够判断出哪些区域是可行驶区域。这是一个困难的计算机视觉技术问题,特别是如果路面与周围环境没有显着差异时,例如道路被大雪所覆盖时间。