人工智能的这一波热潮毫无疑问是由深度学习引发的,自吴恩达等人 2011 年发表“识别猫”研究后,深度学习及其引发的技术已经在图像识别、游戏等任务中超越人类,并让机器学习技术的应用带入人们的生活。这种 AlphaGo 背后的技术是否是未来人工智能的方向?大家吹捧的深度学习到底是不是人工智能的全部?小智君用今天这篇文章为大家解答。
对深度学习的误解
现在每一个人都在学习,或者正打算学习深度学习(DL),它是目前人工智能诸多流派中唯一兴起的一个。太多的创业公司和产品的命名以「深度」开头,深度学习已然成了一个流行语,但其真正使用实际上很少。
绝大多数人忽略了深度学习只占机器学习领域的 1%,而机器学习又只占到了人工智能领域的 1%。余下的 99% 则被用来处理实践中的绝大多数任务。一个深度学习专家无法与人工智能专家划上等号。
深度学习并不是人工智能的同义词。
谷歌、Facebook 等巨头公司宣传最多的人工智能工具主要是或者仅仅是深度学习,因此大众误以为所有的人工智能突破都(将)由深度学习实现。真实情况并非如此。
媒体暗示 AlphaGo 的成功全部归于深度学习,但实际上它是蒙特卡洛树搜索+深度学习,这表明深度学习单枪匹马很难取胜。很多强化学习的任务通过神经进化的 NEAT 而不是反向传播得到解决。
实际上,深度学习是 1980 年代的技术,由于有了更多的训练数据,1970 年代的“带有隐藏层的神经网络”获得新生,重新命名为深度学习之后被大肆炒作。
2015 年 Deep Dream 简直令一众人工智能学者着迷着迷,但是,深度学习并不是人类可以创造的人工智能科技的终点。
深度学习不可避免的缺陷
数十年来,“古老”的深度学习技术已被广泛研究和更新以更准确地解决更多任务,但是没有一个深度学习网络(卷积、RNN、RNN + LSTM、GANs 等)可以解释其自身的决策。无疑深度学习还会解决更多的问题,取代更多的工作,但不太可能解决所有的问题,或者保持惊人的进步以自我解决黑箱问题或者为之正名。
哲学家柏拉图与亚里士多德:深度学习无法理解他们
未来人工智能应探索其他的新方法,或者已存在却被忽视的方法,而不仅仅是深度学习。
深度学习的一个局限是把数据中最常遇见的内容作为真理,把统计学上较稀少的东西看作假的。深度学习的公正性并非来自其自身,而是人类筛选和准备的数据。
深度学习可以阅读并翻译文本,但不是以人类的方式。如果使用超过 100 本书训练深度学习模型:40 本书告诉仇恨、战争、死亡和摧毁如何是坏的,60 本书告诉希特勒的纳粹思想是好的,那么该模型最终会成为 100% 的纳粹!
深度学习靠自己永远无法明白为什么杀害犹太人、同性恋以及残疾人是错误的,如果在训练数据集中纳粹主义是最流行的观点。难怪深度学习无法解释其自身决策,除了“我(深度学习)读到最多的是“纳粹主义是正确的”,因此它应该是正确的”。
深度学习将会学习并模仿最具缺陷的逻辑,包括恐怖主义。甚至孩童可以自己明白电影中那个家伙是坏人,但是深度学习做不到,除非人类首先明确教导它。深度学习中有些东西很酷,比如带有反向传播的梯度下降、自定义深度学习硬件;但这多是统计学和几何学的,很可能不会出现在 2037 年的人工智能时代。
深度学习是一个神经网络,你无法单独编辑每个答案的输出结果。
你无法通过在训练之后添加补丁,来修复一个带有偏见、种族和性别歧视的深度学习模型。深度学习是一个神经网络,与其他 AI 方法不同,你无法编辑某个答案,而是必须使用全新的、完全公正的、稀有的数据对该网络进行重新训练。
深度学习可以在不理解的情况下模仿数据中的内容:它不会否定任何数据,不会发现社会上的偏见,而只是“学习所有数据”。你应该雇佣一个人类员工,专门创建假的完美、公正的数据。但是,由人类专家编辑创建海量无偏见数据的成本仅为了训练深度学习模型,又怎么可以说用 AI 取代人类呢!
AI下一个时代绝不是深度学习
深度学习的重要性应该降低,用于没有法律风险的非商业 app 或游戏。当可解释的 AI 变得流行,深度学习将会像磁带一样被抛弃。
在游戏中输给机器人的人类不太可能说服法官对 AI 公司罚款,因为你无法解释 AI 是怎么赢的。在医疗图像中进行疾病检测是一项安全的深度学习应用,前提是用户在服药之前先向人类医生寻求确认。
合法的深度学习市场非常有限:在决策结果造成财政、健康上的区别,或者存在歧视性,而深度学习无法理解决策是否公正以及为什么公正的时候,法官可以处罚。
那么自动驾驶呢?似乎在艺术、游戏或高级幽默以外的领域使用深度学习都有法律风险。现有的非深度学习方法可以取代深度学习,新方法也会被(重新)发现,因此 AI 的发展将会顺利进行。尤其是每个人研究(并投资)AI 和机器学习科学领域中的所有新旧算法,而不只是深度学习:这也是成为“人工智能专家”的唯一路径。
有一些专家正在开发完全不包含深度学习的全新人工智能系统,但他们缺乏支持:现在所有人都只投资深度学习,而这个风潮还将持续一段时间。没有人知道下一个人工智能浪潮将会是关于什么的,但看起来不会是深度学习 2.0。
小智总结
如果你不太了解人工智能,或者还没有时间来学习,我认为你可以等待下一代人工智能系统的兴起,直接跳过深度学习 1.0 时代。如果你有这方面的需求,我建议你深入了解整个人工智能及机器学习领域的知识——而不仅仅是深度学习。在人工智能成为火热概念的今天,我们更需要冷静的思考,然后再踏出这一脚。